
<Insert Picture Here>

Coherence Architectural and Implementation Patterns

Oracle Coherence Workshop

Copyright 2007 2

Agenda

• Infrastructure and Configuration
– Clustered Named Cache

– Clustering Application Servers

• Data Source Integration and Access
– Coherence To the Side, Behind, On-Top

– Coherence Cache Topologies

• Coherence & Other Oracle Solutions
– Coherence & Times Ten

– Coherence & RAC

• Coherence & SOA Grid (Optional)
– Coherence & Fusion Middleware

• Q&A

Copyright 2007 3

Oracle Coherence
Reliable, Coherent, In-Memory Data Grid

RT Client App Server

Databases

Data Grid ClientsData Grid Clients

SOA/BPM

Clusters with Virtual Memory PoolClusters with Virtual Memory Pool

Copyright 2007 4

<Insert Picture Here>

Coherence Architectural Patterns

Infrastructure & Configuration

Copyright 2007 5

Single Application Process

(c) Copyright 2007. Oracle Corporation

Copyright 2007 6

Clustered Named Cache

(c) Copyright 2007. Oracle Corporation

Copyright 2007 7

Clustered across

Multiple Platforms

(c) Copyright 2007. Oracle Corporation

Copyright 2007 8

Clustering Application Servers

(c) Copyright 2007. Oracle Corporation

Copyright 2007 9

With Data Source Integration

(Cache Stores)

(c) Copyright 2007. Oracle Corporation

Copyright 2007 10

Clustered Second Level Cache

(for Hibernate)

(c) Copyright 2007. Oracle Corporation

Copyright 2007 11

Coherence*Extend

• Supports “fat client” real-time applications such as

trading desks, as well as other server tiers

• Provides near caching capability within “fat client”

app, and other server tiers connected to the cluster

remotely (through firewall)

• Connection to the cluster is over TCP

• Continuous query can be used to maintain real-time

query results on the desktop!

Copyright 2007 12

Remote Clients connected to

Coherence Cluster

(c) Copyright 2007. Oracle Corporation

Copyright 2007 13

Interconnected WAN Clusters

(c) Copyright 2007. Oracle Corporation

Copyright 2007 14

<Insert Picture Here>

Coherence Architectural Patterns

Data Source Integration and Access

Copyright 2007 15

Architectural Integration Possibilities!

Direct Data Integration:
Oracle Coherence Behind: Use Oracle Coherence as L2

cache for OR/M (Hibernate)

Oracle Coherence To-The-Side: Application manages Data

CRUD in Oracle Coherence next to OR/M

Oracle Coherence On-Top: Oracle Coherence is System of

Record. Use CacheLoaders and CacheStores to integrate

with Data Sources

Copyright 2007 16

Cache-Aside Architecture

• Cache-Aside refers to an architecture in which the

application developer manages the caching of

data from a data source

• Adding cache-aside to an existing application:

– Check the cache before reading from the data source

– Put data into the cache after reading from the data source

– Evict or update the cache when updating the data source

Copyright 2007 17

Cache-Through Architecture

• Cache-Through places the cache between the client of the data

source and the data source itself, requiring access to the data

source to go through the cache.

• A Cache Loader represents access to a data source. When a

cache is asked for data, if it is a cache miss, then any data that it

cannot provide it will attempt to load by delegating to the Cache

Loader.

• A Cache Store is an extension to Cache Loader that adds the

set of operations generally referred to as Create, Read, Update

and Delete (CRUD)

Copyright 2007 18

Data Source Integration

• Coherence supports transparent read-write caching of
any datasource, including databases, web services,
packaged applications and filesystems, databases are
the most common use case

• Effective caches must support both intensive read-
only and read-write operations, and in the case of
read-write operations, the cache and database must
be kept fully synchronized.

• To accomplish this, Coherence supports Read-
Through, Write-Through, Refresh-Ahead and Write-
Behind caching.

Copyright 2007 19

Persisting Data to a Database

• So far, we have written data only to memory of the

Coherence JVMs

– It’s persistent because of the backups

– However, this is not permanently persisted to disk or a

database

• Integration with databases is done with the

Coherence CacheStore

– Writes to the cache can persist to the database

– Reads to the cache can obtain data from the database

automatically

– Any backing data source can be used: RDBMS, Mainframe,

Disk File, Berkeley DB, etc.

Copyright 2007 20

Persisting Data – The mechanics

• Backing Maps are the method by which a

NamedCache persists data

• Memory is the default implementation that we have

been using

• This is achieved by using a different Backing Map to

persist to databases, files ,etc

Copyright 2007 22

Read Through

Read from CacheLoader when data not in grid

– If data is not present in the cache, then the back end data source

implementation is used to read the data and place it in the cache

Copyright 2007 23

Write Through

Write to CacheStore when data inserted, updated, removed in grid

– When writing data, the “put” method will not return until the data is

written the back end data source. E.g. synchronous

Copyright 2007 24

Write Behind

Asynchronous and coalesced updates to CacheStore when data

inserted, updated, deleted in grid

– Data is written asynchronously to the back end data source with a

configurable delay. E.g. ensure that the data is written by a max of n

seconds

Copyright 2007 25

Refresh Ahead

Data that is about to expire will be refreshed before its expiry time, so as
to not delay any reads

Copyright 2007 27

Data Source Integration

There are a number of out of the box integrations:

• Hibernate

• Toplink Essentials

• Java Persistence Architecture (JPA)

• Simple JDBC

• File system

• You can also write your own ORM (Object-Relational
Mapping) code using JDBC and implementing the
CacheStore interface
– http://wiki.tangosol.com/display/COH32UG/Sample+CacheStore

Copyright 2007 28

Architectural Integration Possibilities!

Session Management
Oracle Coherence Web = drop-in replacement to reliably

cluster and scale out session management (Java and .NET)

across a grid

Service Integration:
Oracle Coherence WorkManager: Use Oracle Coherence to

resiliently manage and execute “tasks” across the members.

Invocation Service: Directly use Oracle Coherence Invocation

Service to execute tasks on individual, sets or all members

(sync or async)

Copyright 2007 29

Architectural Integration Possibilities!

Provide:

Push / Pull data model based on subscription and event

notification

Client / Data Grid model where clients connect to Oracle

Coherence for data and services

Copyright 2007 34

<Insert Picture Here>

Coherence Architectural Patterns

Coherence & Other Oracle Offerings

Copyright 2007 35

Coherence and FMW
Natural Integration Points

Data Caching, Extended
State Replication, Shared
In-Memory Infrastructure

Session Sharing
and Data Caching

Shared Service for
Java, .NET, C++ …

Accelerated
Stateful Business

Processes; Clustered
BAM

Content
Caching

Copyright 2007 36

Network

Coherence & Other Oracle Products
RAC, Times Ten, Coherence, Web Cache

Web
Cache

Web
Servers

Application
Servers

Coherence

RAC

Times Ten

HTML Data Structures
in Memory

Java Data Structures
in Memory

SQL Data Structures
in Memory

Web Cache offloads
Web Servers,

Improves Network
Performance via
Compression

Coherence caches
Java Structures in
Memory; Very Fast

Access to Java Data in
Memory across Mid-

Tier Grid

Times Ten & RAC
provide Scalability to

Database Data
improving Query &
Transaction Write
Performance

Web Tier Application Tier Database Tier

Copyright 2007 37

Oracle RAC, Times Ten, Berkeley DB
Coherence has Natural Integration Points

Berkeley DB

Cache Overflow Integration
with Coherence

TimesTen

Clustered Caching with
Coherence

Oracle RAC

Persistence QoS
with Coherence

Middleware Infrastructure

Oracle RAC

Middleware Infrastructure

Coherence

Berkeley DB

Cache Overflow

Oracle RAC

Middleware Infrastructure

Coherence

Application

Servers

Application

Servers

Times

Ten

Times

Ten

Copyright 2007 38

Coherence & TimesTen Strengths

Scale Out

Database

Functionality

Oracle

Coherence

Two Best of Breed Solutions for

managing data in the middle tier

Both provide:

• High Throughput

• Data Reliability

• High Availability

Single Node
(SMP)

Cluster
(N-nodes)

Grid
(NNN-nodes)

Search &
Aggregation

SQL
Operations

Full SQL w/
BI Queries Oracle

TimesTen

Copyright 2007 39

Coherence & Other Oracle Products
RAC, Times Ten, Coherence, Web Cache

• Many different bottlenecks in Transaction Applications
– Three Tiers in Architecture: Web Server, App Server, DBMS

– Three Shapes to Data: SQL, Java, HTML

– Three Types of Access to Data: Query, Transaction, Fetch

– Different Types of Bottleneck: Network; CPU; Memory; I/O/Storage

• Key Performance & Scalability Considerations
– RAC: Improve Scalability of DBMS to Manage Transactions by

clustering Nodes Together – Data shaped as SQL

– Times Ten: Offload DBMS while Caching Data In-Memory &
Providing Queryability on Data – Data shaped as SQL

– Coherence: Offload DBMS while Caching Data In-Memory within
Java VM & close to Application – Data shaped as Java

– Web Cache: Offload Application & Web Servers; outside Firewall &
and caches Data In-Memory – Data shaped as HTML

• Oracle’s Solutions work together – Complete, Integrated

Copyright 2007 40

<Insert Picture Here>

Coherence Architectural Patterns

SOA Grid (Future)

Copyright 2007 42

SOA Grid – Advanced Capabilities

• Co-locate service code with grid data

–Load balance and dispatch requests

appropriately

• Availability and failover of Stateful

services

• State Passing Model Redefined

–BPEL dehydration into the grid

• Relocatable BPEL processes

Copyright 2007 43

SOA Grid

SOA Grid

P

B

Update/Fetch

Ack/Nack

E
S
B

Backup
Node

BPEL Process

Primary
Node

Service

Service

Service

Copyright 2007 44

Stateful Service load balancing

SOA Grid

P

BE
S
B

BPEL Process

Primary
Node

Service

A

Service

A1

Service ‘A1’

Invocation

Load Balanced

Services

Backup
Node

Fetch

Copyright 2007 45

Stateful Service availability/failover

SOA Grid

P

B

Update/Fetch

Ack/Nack

E
S
B

Backup
Node

BPEL Process

Primary
Node

Service

A

Service

A1

Service ‘A’

Invocation

Load Balanced

Services

Copyright 2007 46

Stateful Service availability/failover

SOA Grid

P

BE
S
B

BPEL Process

Primary
Node

Service

A

Service

A1

Service ‘A1’

Invocation

Load Balanced

Services

XXXX
Backup
Node

Fetch

Copyright 2007 47

DB Grid
DB Grid

DB Grid

Service 1

Service 2

BPEL Server 2

Process 1

BPEL Server 1

Process 1
Invoke

Callback

BPEL Dehydration Example

L
o
a
d
 B
a
la
n
c
e
r

Data Flow

1) BPEL Server 1 Process 1 invokes Service 1
setting callback URL to LBR

2) BPEL Server 1 Process 1 dehydrates to
Grid

3) Service 1 Invokes LBR

4) LBR invokes BPEL Server 2 Process

5) Server 2 Process 1 rehydrates process
data from grid and continues

4

3

1

2

Service 1 and 2 can store their own
data in the SOA Grid but they do not

require access to the BPEL
dehydration store in this example.

E
S
B

E
S
B

SOA Grid

P

B

5

Copyright 2007 48

Q&A

Copyright 2007 49

Copyright 2007 50

